본문 바로가기

AI3

Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting https://arxiv.org/abs/2407.08223 Speculative RAG: Enhancing Retrieval Augmented Generation through DraftingRetrieval augmented generation (RAG) combines the generative abilities of large language models (LLMs) with external knowledge sources to provide more accurate and up-to-date responses. Recent RAG advancements focus on improving retrieval outcomes througharxiv.org0. AbstractRAG는 LLM의 생성 기능과.. 2025. 1. 22.
VoxelMorph: A Learning Framework for Deformable Medical Image Registration VoxelMorph: A Learning Framework for Deformable Medical Image RegistrationWe present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich defoarxiv.org0. AbstractVoxelMorph은 변형 가능한 pair별 의료 image registration을 .. 2024. 11. 7.
(RAG) Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks Retrieval-Augmented Generation for Knowledge-Intensive NLP TasksLarge pre-trained language models have been shown to store factual knowledge in their parameters, and achieve state-of-the-art results when fine-tuned on downstream NLP tasks. However, their ability to access and precisely manipulate knowledge is still limarxiv.org0. AbstractPretrained LLM은 사실의 지식을 매개변수에 저장하고, downstream NLP 작업에서 미.. 2024. 11. 3.